Unification of Eulerians and Binomials
The most obvious recurrence relation satisfied by the binomial
coefficients is the familiar
C(m,n) = C(m-1,n) + C(m-1,n-1)
Somewhat less familiar is the recurrence
C(m,n) = (n+1) C(m+1,n) - (m+2) C(m,n-1)
The nice thing about this formula is that it generates the Eulerian
Numbers as well as the binomial coefficients, so that both sets of
numbers can be regarded as simply different regions of a single array.
Here is a brief table to illustrate:
The Binomial & Eulerian Numbers
n
-1 0 1 2 3 4 5 6 7
m
-8 0 1 120 4293 88234 1310354
-7 0 1 57 1191 15619 156190 1310354
-6 0 1 26 302 2416 15619 88234 455192
-5 0 1 11 66 302 1191 4293 14608 47840
-4 0 1 4 11 26 57 120 247 502
-3 1 1 1 1 1 1 1 1 1
-2 0 0 0 0 0 0 0 0 0
-1 1 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0
1 0 1 1 0 0 0 0 0 0
2 0 1 2 1 0 0 0 0 0
3 0 1 3 3 1 0 0 0 0
4 0 1 4 6 4 1 0 0 0
5 0 1 5 10 10 5 1 0 0
6 0 1 6 15 20 15 6 1 0
7 0 1 7 21 35 35 21 7 1
Return to MathPages Main Menu
Сайт управляется системой
uCoz