Following are the 104 primes less than 1000 for which a concordance solution is known. Most of these results (especially those with very large numbers) were computed by David Einstein, including the case of p=863. Allan MacLeod found the same solution for p=863, and also found a solution for p=983 in Sept 97, thereby completing the table. The table lists two sets of values of r,s for each prime. Using the left hand set the values of a,b,c,d such that b^2 + d^2 = c^2 b^2 + pd^2 = a^2 can be computed using the formulas v=r^2 u = s^2 - r^2 and ka = u^2 + 2uv - (p-1)v^2 kb = u^2 - 2(p-1)uv - (p-1)v^2 kc = u^2 + (p-1)v^2 kd = sqrt[ 4uv(u+v)(pv-(u+v)) ] Using the righthand values of r,s the values of a,b,c,d can be computed using the formulas v=r^2 u = s^2 + r^2 and ka = u^2 - 2uv - (p-1)v^2 kb = u^2 + 2(p-1)uv - (p-1)v^2 kc = u^2 + (p-1)v^2 kd = sqrt[ 4uv(u-v)(pv+(u-v)) ] Note that the gcd represented by k in these equations must be a divisor of p-1. (s^2 - r^2)(pr^2 - s^2) (s^2 + r^2)(pr^2 + s^2) is a square (uv > 0) is a square (uv < 0) ----------------------- ----------------------- p r s r s ---- ------- -------- ------- ------- 7 1 2 1 1 11 1 3 2 1 17 1 3 1 1 23 5 6 1 7 31 1 2 1 1 41 1 3 1 2 47 13 36 7 17 53 5 13 6 17 59 1 3 2 5 61 1 7 2 1 71 1 6 1 1 79 1 2 1 5 83 17 33 20 107 97 1 7 1 1 101 1 9 2 1 107 1 3 2 7 113 5 9 1 7 127 1 8 1 1 137 1 3 1 4 149 13 85 42 67 151 1 2 2 1 157 1 7 2 3 167 17 66 7 23 179 89 153 88 835 181 5 13 2 11 193 5 11 1 7 199 1 10 1 1 211 1 13 2 1 227 41 297 208 383 233 17 33 10 91 239 1 8 4 1 241 1 5 1 1 251 1 3 2 11 257 17 81 7 23 263 545 5874 281 1 15 2 1 293 2465 10657 307 1 17 4 1 313 5 7 1 18 331 5 17 2 11 337 1 13 1 1 347 1 3 2 13 349 1 7 2 5 353 5 93 7 1 359 16481 35250 367 1 2 1 11 383 38785 222336 389 1073 1105 401 1 3 1 2 409 1 5 421 5 19 433 5 103 449 1 15 461 29 213 463 5 16 467 30161 64017 479 25 264 487 97 146 491 193 291 503 845 11454 521 1 3 523 257 1507 541 13 229 547 1 13 563 113 1137 571 13 25 577 1 17 587 1 3 599 1 24 601 1 11 613 25 313 631 1 8 647 5 14 661 1 23 673 5 19 677 29 133 691 17 259 701 13 27 719 4663525 81621996 727 13 134 733 16237 94213 739 1 17 751 1 4 761 17 21 769 29 35 773 144625 677137 809 1 3 811 41 283 823 1 26 839 64025 941994 859 5 49 863 2365498105 13810017384 655373999 3280495007 (einstein/macleod) 877 13 19 881 1 21 887 68140133 239252694 911 1 6 919 1 26 937 1 17 941 653 1029 953 25 39 967 1 22 977 1 3 983 2917382885 59634234294 3129972023 2688032911 (macleod) 991 1 10 These are the 48 primes less than 1000 that are definitely discordant, based on my elementary proof (and in agreement with the Birch/Swinnerton-Dyer conjecture and numerical results): 2 3 5 13 19 29 37 43 67 73 89 109 139 163 173 197 229 269 277 283 317 373 379 397 419 457 499 509 557 569 617 619 643 653 659 683 709 757 787 797 827 829 853 857 883 907 947 997 These are the 16 primes less than 1000 that are not ruled out by my proof, but are "ruled out" on the assumption of the Birch/Swinnerton-Dyer conjecture: 103 131 191 223 271 311 431 439 443 593 607 641 743 821 929 971